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ABST RACT

It is shown that by using the simplest construction of discrete dipoles ,

the operation count for solving the Dirichlet problem of Poisson ’s equation

by the capacitance matrix method does not exceed constant times n 2 log n ,

n = 1/h for certain f i rs t  and second order schemes of interpolating boundary

conditions.
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SIGNIFICANCE AND EXPLANATION

The Dirichlet problem for the Poisson equation is the following: Given a

function f and a function g , f ind a function u such that

u + u  = f  on ~2 ,xx yy

u = g  on 3 Q .

Here ~ is a simply connected domain with boundary 3~~

The problem has wide applications in electrostatics , elasticity , temper-

ature distributions and plasma physics . Its solution by finite difference or

f inite elements methods have received considerable attention . It is

known that if ~ is a rectangle , then fast Fourier t ransform methods are very

e f f i c i en t  in solving the linear system of equations arising from f in i te  d i f fe r -

ence or f ini te element discretizations.

There seems to be no such short cut to the solution of these equations

when ~ is a general region . In many conventional methods , the operation

count is usually proportional to N 312 (N is the number of mesh points in

Q ) while at least ~ computer storage is required. These methods are

therefore undesirable when N is very large . In this paper we describe an

algorithm and prove mathematically that the operation count of this algorithm

can be proportional to N log N. While some versions of our algorithm also

requi re at least N computer storage , there is one version that requires less

than N/3 computer storage .

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC , and not with the author of this report .
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FAST POISSON SOLVERS ON GENERAL Two DIMENSIONAL REGIONS

FOR THE DIRICIf LET PROBLEM

A. 5. L. Shieh

§1. Introduction

Over the past ten years , very fast n umerical methods have been developed to solve

Poisson ’s or He]mholtzs equation on certain simple regions with Dirichiet , Neumann or

periodic boundary conditions. See e.g. 121, [3], [81, [9], [12], [19] and [21]. These

methods can only be used for regions and boundary conditions that allow for separation of

the variables . Typical examples are Poisson ’ s or Helitholtz ’s equations in Cartesian co-

ordinates on rectangular regions with boundary conditions that do not change type along any

of the sides of the rectangle . In these special cases , the operation count for solving the

discrete problem is almost proportional to the number of mesh points .

The purpose of this paper is to establish similar results for the Poisson equation

on general regions . In this work we are only concerned with finite difference schemes

of first and second order accuracy for the Dirichiet problem on simply connected bounded

domains with smooth boundaries. A formal discrete potential theory motivated by the clas-

sical potential theory is incorporated into the so—called capacitance matr ix method. It is

shown that by using the simplest construction of discrete dipoles in our Ansatz, it is

possible to have an algorithm the operation count of which is proportional to N
2 log N ,

where h = l/~ is the mesh size . Some numerical results are given in section 9 and a

brief survey of past work in this direction is given in section 8.

Sponsored by the United States Army under Contract No. DA1~ 29-7S-C-OO24 and the Energy
Research and Development Administration.
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~2. Certain results from classical potential theory.

We give only a very brief revL~w of a few results of classical potential theory. For a

detailed exposition see e.g. [lO~~, [14], [251 and [281 . We define the potential V resulting

from a charge distr ibution ~ on a smooth boundary curve ~Q by

(x) = (l/r)f p(~~) loglr ds(~~)

Here x — (x
1
,x
2
), ~~~= (E~1

,~~~) and ~2 
= (x

1
—~~1

) 2 + (x
2

—E ~2
) 2 . The Green ’s function

(1/211) log 11 which we shall denote by G* satisfies

A (l/211) log r = 5(x)

where S(x) is the delta function. Similarly the potential ~ of a dipole density p on

~() defined by

(2.1) ~ (x )  = (l/iT)f J (~ ) aC */3v ds(~~)

We adopt here the convention that the normal direction of ~3(2 is towards the exterior of

the region (2 in which we want to solve our problem.

The interior Dirichlet problem can be reduced t~oaFredholm integral equation o~ the

second kihd if we make the double layer Ansatz as follows. Let

u(x) = — (1/211) ff f(() logr d~ + (1/IT ) f p (~~) 3G*/3v~. ds(~~) = u (x ) + h (x)
(2 3(7 S

for the solution of

— A u — f , x a  (2

(2.2)

u = g, x € 3(7

It can be shown that the dipole density p satisfy the following integral equation

(2 . 3 )  p + (1/11) f * 
— g — u l

3(2 3(7

This is a well posed problem of the form

11,
(2.4) CI +

where K is a compact operator defined by the integral above.

If we instead attempt to use a single layer Ansatz for the Dirichlet problem we obtain a

Fredholm integral equation of the first kind. It has the form

V(x) — g - u 1 3(2 x € 3(7

which is an ill posed problem.

To illustrate the distribution of the eigenvalues of the compact operator K

in equation (2.4), we study the case when (7 is an ellipse with

-2-
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= (a—b)/(a+b) where a and b are the half axes of the ellipse . It is known (see e.g.

p. 135 of [25]) that K = K
T 

and

(2 .5) A .(K4~K
T) = 2~

i_l 
, i 1,2 

On the other hand , both the int€rior  and exterior Neumann problems Can alSO be redUCed tO

Fredholm integral equations of the second kind if we make the single layer Ansatz. The

charge density p for the exterior Neumann problem satisfies

T *

*
for some suitably chosen function g defined on 3(7. The existence and uniqueness problems

for the solution of equation (2 .3) can therefore be determined from that of equation ( 2 . 4 )

*
and vice versa. Finally , we remark that the G in equations (2.1) and (2.3) can be re-

placed by the Green ’s function on a sufficiently large rectangle with zero Dirichlet bound-

ary conditions.

— 3 —



§3. The capacitance matr ix method

In this section we develop a similar, formal potential theory for  the discrete

problems arising from the original Dirichlet problem (2.2). See also Sections 3 and 4 of 129 1

for a similar discussion. We shall assume that uniform mesh sizes in both coordinate directions

are used.

We replace the Laplace operator by the five-point formula. The fundamental solu-

tion (1/29) log(l/r), used in Section 2 , will be replaced by its discrete analogue , the dis-

crete Green ’s function on the entire plane , which we shall denote by G. Properties and

efficient methods of generating G and its undivided differences will be studied in Section 4.

An efficient method of computing Gv for arbitrary N N vectors v is also given

in Section 4. We will denote by B the matrix representing the five—point discrete Laplacian

h
2
t
~h

, using undivided d i f ferences, on the entire plane . We then divide the set of mesh points

into three disjoint sets 
~h

’3
~h 

and (CQ)
h
. The set 3

~h 
contains all the irregular mesh

points in (7 , i.e. mesh points that do not have all four neighbours within the open set (2

is the set of regular mesh points inside (2 and ( C() )
h contains the remaining, the exte-

rior mesh points.

We then set up the matrix equation

( 3.1) Au = v

that we are solving as follows. We use the same discretization formula for both A and B

°~ 
~h 

U (c())
h
. For points in 3[~ , a linear combination of the discrete Laplacian and inter-

polation formulas of first or second order accuracy for the boundary conditions are used. The

values of the solution at the exterior mesh points are always eliminated from the discrete

Laplacian , centered at an irregular mesh point. This guarantees that A is a reducible matrix

with no couplings to the exterior mesh points from the irregular mesh points. If P is a

suitably chosen permutation matrix, then

A11 0

P A ~T =

A21 A22

where A
11 is the coefficient matrix for our discrete problem °~ 

~h ~ 3~h~ 
It is easily

seen that the solution on 
~
2h ~ 3~h 

will not be influenced by either the solution or the

data on (c())
h

—4—
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The matrix A differs free B by only m rows where 51 is the cardinal number of

We can theref ore wr i te

A = B + U W
T
,

where the matrices U and W have m columns. The matrix U represents an extension

operator. It maps any mesh function defined only on 3
~
2
h 

into a func t ion  on all mesh points.

Its transpose, u
T
, is a trace operator mapping any mesh function defined for all  mesh po in t s

into its restriction to 3
~
7
h • We easily verify that

w
T 

= U
T A_B .

We now describe our method for solving the discrete problem (3.1). Guided by the contin-

uous analog we make the Ansatz,

(3.2) u = G v + GV 1J .

The vector Gv sat isf ies BGv = v. The n-vector p is determined by solving a system of

m~<m linear equations derived below. The mesh function V~ should vanish on 
~~~ 

Each

column of the matrix V represents a discrete dipole of unit strength. Let such a column

corresponding to P € 3
~h 

be regarded as a mesh function, denoted by VT(P). We require that

(l/h )VT(p) u = [3u/3V] (p) + 0(h). Here h = h/cosu where s is the angle between the normal

through the irregular mesh point P and the closest coordinate axis. In particular , if

that the western and northwestern neighbours of P in (C
~~
)
h
, then

(3.3) (V ’
~
’u](P) = u (P) — (1 — tan o) u (w) — (tan G*)u(NW).

We now use our Ansatz and compute the residual vector ,

(3 .4)  Au-v = (B + uwT) (~;p + Gyp) — Fv

= (V + ~~T~~ ) p +

From the properties of U and V, it follows that the residuals are zero for all x r

To derive a linear system of equations for the vector ii we multiply equation (3.4) by uT.

It is easy to verif y that uTu = 1
m 

and uTv = . Here ‘m 
is the mXtn identity matrix.

We thus obtain

(3.5) (I + wTclv)p = _wT~~

This choice of p make the residuals zero for all x € 3
~
2h • Hence substitution of P in

equation (3.2) will provide us a solution on c2h U 3~h 
if equation (3.5) is solvable. Note

that the residuals will in general not be equal to zero for all x 
~ ~~~~ 

. The matrix on

—5—
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~w. ~~~~~~~ ~~~

the lett-hand side of Equation (3.5) is the capacitance matrix C . W~ shal l  r e f e r  to

Equation ( 3 . 5 )  as the capacitance ~a t r i x  equation.

In the special case when “ = u U~v. we can simply make the Ansatz u = B 
1
V~~. It is

easily seen that the residual Au-v will again be zero at x 
~h 

The capacitance matrix

equation now becomes

(3.6) CIj = u
T
~

I f  Equ at ion  ( 3 . 6 )  is solvable , then Au = v will also be zero on The solvability of

Equations (3.5) and (3.6) will be discussed in Section 6.

We now describe our choices of difference equations at the irregular mesh points. W~

approximate the boundary conditions by interpolation schemes of first or second order accuracy,

which we shall refer to as schemes 1’ , Tb and II respectively.

We start with Scheme II. Let P € and ~~* be its closest point on 3(7. Let

W,E,N and S be the western , eastern , nor thern and southern neighbours of P on the mesh

respectively. We assume that the local orientation of the boundary is such that either both

W and N are in (C(])
h 

or only W is in 
~~~~~ 

Assume that both W and N are in

Let d
1 

denote h
1
/h where h

1 
is the distance , along a mesh line parallel with the x

1
—axis,

between the mesh point P and the boundary 3(2. Hence d
1 

(0 ,1]. The Dirichlet data at

this point on 3(7 is denoted by u~ . The values of d
2 

and U
N 

are similarly defined . We

then approximate u
~ 

and u.~ by (l/2)[(l+d
1
)u(W) + (l—d

1
)u(E)] and (l/2)[l+d

2
) u ( N )  +

(1-d
2
)u(5)) respectively. By combining the above with the five—point formula for the Laplacian

and eliminating u(W ) and u (N) between them , we obtain

(3.6) 4u(P) — [2d
1
/ ( l+d

1
) ) u ( E )  — (2 d

2
/( l+d

2
)) U(S)

= h
2
f(P) + [2/(l+d

1
) ] u  + [2/ (l+d

2
) ] u

If only W is in (C(fl
h~ 

then we obtain

(3.7) 4u(P) — [2 d
1
/(l+d

1
)]u(E) — u(N) — u(s)

= h
2f ( P )  + [2/ (l+d

1
)Ju w

We now describe the two variants of Scheme I, namely Scheme Ia and lb. In Scheme Ib ,

if both W and N are in (Cf))
h
, we obtain

4u(P) — U(S) — U(S) — h
2
f(P) + u~ + U

—6- 
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I f  on ly  W is in (C:. )
h~ 

w.-~ obtain

(3.9) 214u(P) — u(S) - u ( E )  — u (Nfl = 2 (h
2
f(P) 4-

The scal ing factor 2 is largely artifical and is put in only for the convenience of

theoret ical  estimates in Sections 5 and 6. In Scheme Ia , we seek to e l iminate this scaling

factor while retaining the theoretical convenience. We require tha t  Equation (3.8) should be

used regardless of whether both W and N are in (C(2)
h 

or only W is in (C([)
h
. The

matrices A11 for all the above three schemes are of positive type. Hence , the resul ts in

[41 or [131 upp ly and all these schemes are convergent.

There is an important alternative to the above approach. Instead of the discrete Green ’s

function of the entire plane , we may use the discrete analog of the Green ’s function on a

sufficiently large square S with zero boundary conditions as our G in equations (3.2) and

(3.5). In this case G = B
D
1
; A — B

D 
+ ~~~~ Here B

D 
denotes the matrix representing the

discrete Laplacian h
2
A
h 

on S and zero boundary values on the grid points of 3S. The

residual Au—v will again be zero on u 3
~~h 

if C = u
T A is nonsin qular.

Finally we come to the central question as to whether the capacitance matrix equation

(3.5) is closely related to the Fredholm integral equation (2.2)? It is known (see e.g. (161 )

that the conjugate gradient method converges superlinearly for Fredholni integral equations of

the second kind. In our experiments we normally fail to observe superlinear convergence . To

understand this fully, we split up the matrices C into two parts as follows.

- C B
h

+ K
h

.

The mat r ices  B
k are def ined by

B
h

(P ,Q) 3 C(P ,Q) , if d ( P ,Q) <
(3.10) 

—

5 0 , otherwise

They are therefore the near diagonal parts of C and the matrices K
b 

are the remaining

parts, the of f  diagona l parts of C

It will be shown in Section 6 that for Schemes La and Ib , and , after a suitable scaling ,

for schemes II , the matrices K
h 

are closely related to the compact integral operator K in

Equation s (2 .2) or (2.3). The matrices B
h
, however , will not in general be formal approxi-

mations  t~ the identy operator. In fact, the algebraic row sums of 8
h 

need not always be

equal to one.

—7—
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It is, however , shown in [161 that for operator equations with symmetric positive defi-

nite operators of the form B + K with B symmetric positive definite and K symmetric

compact , the conjugate gradient method will converge linearly wi th asymptotic rate of con-

vergence governed only by the spectral corid~ ion number of B . We therefore proceed to

study the special condition numbers of B
h 

in Section 5 and the distr ibution of si ngula r

values of K
b 

and C in Section 6. We shall show in Section 7 that the asymptotic con-

vergence of the conjugate gradient method for solving the capacitance matrix equations will

depend essentially on the spectral condition number of B
h
.

We now discuss briefly two different methods of implementing our algorithm and the

operation coun t involved. We use the conjugate gradient method to solve

C
T
CU = C

T
b,

where b denotes the right hand side of the capacitance matrix equation . The solution u

is then computed from (3.2). In the first method , we generate the capacitance matrix

explicitly. Assume that the G in equations (3.2) and (3.5) is the discrete Green ’s func-

tion on the entire plane . Because of translational invariance it is only necessary to com-

pute G with the second parameter fixed at the origin. It is shown in section 4 that only

one call of fast Poisson solved on a sufficiently large rectangle is needed to generate G

and only two calls of a similar solver is needed to compute the final solution and the right

hand side b . The operation count of the algorithm is therefore constant N
2 log N

+ 2 C
0
1n
2 

+ 0( m )  , where C
0 

is the number of iterations needed to achieve a certain accuracy .

If the G in equation (3.5) is B
D
’ , it is desirable to use the second method where

the solution u is coinputed by an iterative implicit method first appearing in (15). The

operation count for computing p is proportional to C
0

(m+m
1
)N , where m

1 
is the n umber of

nonzero entries in the matrix V provided that a special fast solver is used in the process.

See section 4 of [31] for details. It will be shown in section 7 that C
0 

cannot exceed

constant log m if G B
D
’ is used in (3.5) for all domains with sufficiently smooth bound-

aries and that C
0 

is u n i f o r m l y  bounded in some special cases if the discrete Green ’s func-

tion on the entire plane is used in (3.5). The total operation count of our algorithm there-

fore does not exceed constant N
2 

log N

—8—
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: 4 .  P roper t ies  and fast qenera t ion  of G , the . scre te  Green ’s f u n . t ion on the e n t i r e  r i a r s ,

and the e f f i c i en t  computations of Gv , GV ,~ and W
TGv.

A discrete fundamental  solution of the five-point Laplacian 
~h 

wi’.h respect to the

origin is a mesh func t ion  y tha t  sa t is f ies

—2
(h if j J = 0 ,

(4.1) &~y (ph) =

0 if p~~~O ,

where Ii has integer components p
1 

and p
2 -

Clearly y is unique up to an arbitrary linear function . The constants involved will be

chosen so that we have a proper discrete analog of the logarithmic potential . The resulting

discrete fundamental solution wi l l  then be our discrete Green ’s function G.

It is established in [27] that if g(r,s) denotes

(4.2) (2/iT ) f
11
[l—cos(sA) exp(—~ r!p)]/sinhp dA

0

where

(4.3) cosA + cosh p = 2

(4.4) p/A 1 as p -
~ 0,

then the function G defined by

(4.5) G(rk,sh) = (1/4) g ( r , s) + (l/2 i r) log  h — (l/4 1r ) (log 8 + 2X
1
)

is the desired Green ’s function of the entire plane. Here y
1 

is the Euler ’s constan t; r

and s integers and h is the mesh size.

It  is shown in [27]  that

(4 .6) g ( 0 ,0) = 0 , g( 0 , l) = 1

(4.7) g(r ,s) = q ( s ,r) = g(—s ,r) =

(4.8) g(r,r) = (4/11) [1 + 1/3 + . .. + 1/(2r—l)]

(4.9) g(r ,s) — (l/ir)log(s
2
+r

2
) + (1/iT ) (log 8 + 21

1
) + o ( l/ r ) ,

(4.10) g (r , s) - g ( r , t)  = (l/r)log((r
2
+s

2
)/(t

2
+r

2
) 1  + o ( l/ r ) .

We have found it necessary to obtain sharper estimates for the remainu~ r term ~n (4.10)

when t = s+l and a similar estimate for g(r+l ,s) — g ( r ,s).

Theorem 4.1. Let r ,s and t be nonnegative integers with r > 8; a — t-l. Then

(4 .lla ) G (r h ,sh ) — G( r h ,th) = (1/41T)log[(s
2+r 2) / ( t 2+x 2)) + R

1
(r , S)  + R

2
( r , s) +

where



(4 . l l b ) R1
(r , s) 5 (1/2471 ) 5 (~\ 2

~~rA 3)s in~~~s + l/2)\1

(4 .llc ) R
2
(r,s) 5 -(1/271) 

~ 
{((l/3O)A

4
+(7/g6)r~

5
+(1/2B8)r 2A6] - e rX sint(2s+l)X /2]}dA ,

(4.lld ) R
3
(r ,s)j < ( 0.~~ 7 ) r l

e~~~
. 3Sr + (167)r~

7 
-

Proof. We have

(iT,’2)[g(r,s)-g(r ,t)] — cos(sA))e rP
tsinh pl

_l 
dA

and it is known that

5 [ cos ( tA )  - cos(sA)]e 
A
A
_l

d X  = (l/2)log[(s2+r2)/(t2+r2)].
0

Since

(4.12) l cos(tA) — c o s( s A )I  e

_
~~~X

1
dA < (2/iT)r~~ e ’°’,

it suffices to estimate

J
71
[cos(sA) - cos(tA)][e A

1 
— e rP (sinhp)~~ )dA .

0 
1 3The integrand in the above expression will be denoted by ~J. Let €- = (l.5)r / , r > 8. We

have

(4.13) 5

C 
d A = f ~ (cos(sA)—cos (tX)]e~~~~(2 sin(X/2)] 

1
F (X)dA

0 0
where

(4.14) rCA ) S 2(sin (A/2)]A 1
—2 sin(A/2) (SIflh(I) l

S
O
~~~~

r

By (4.3) and (4.4), we have

(4.15) sinh p = 2(sin(A/2)](1+sin2(A/2fl 1”2

(4.16) ~~~ = 2 — cosA —2 [sin(A/2)] [l + sjn2 (X/ 2 ) 1 1”2

It is easily verif ied that for 0 < A <

(4.17) ~~~~~~~ = I + (1/ 12) (A 3+A 5) + (1/288)A 6 +

with 1C1
(A) I < 0.035, 0 <A < 1 . Hence ,

— 1 + (l/ l2) (rA 3 + rA
5
) + (l/288)r 2A6 + C

2
(r , X) -

Here C2 (r ,A ) I  < (0 .04 )rX 7 + (0.01)r 2 A 8 + (0.OOl)r
3
A9 . Therefore,

F ( A )  — (1/ 12) [A 2 — r A 3 
— (7/8)rX

5
] — ( l/ 3 0 )X 4 

— (l/288)r 2X6 + C 3
(r , X) -

Here 1C 3 (r , X ) I  < (0.Ol)A
6 

+ (0.05 1)rA 7 + (0.0104)r2X8 + (0.001)r3A 9 -

Hence ,

(4.18) fCJdx = 2 1T[R
1

(r ,s) + R2 (r , s) 1 + Z
1

(r , s ) +  Z 2
(r , s ) ,

0
where (4 . 19)

(4.19) 1Z1(r ,s)I < 100 
e
_ rA

C ( r ,A )dA

< 1047 r 7

-10—



(4.20) 5
2
(r ,s)I (l/6)r~~ e

1.5r
21
~~

It remains to estimate J~J (I\

Clearly,

( 4 . 2 1 )  I ~ J (~~~r~ + e r ) d  -

It can be show n that  e~~ us a decreasing funct ion o~ A for  0 < A < i t . See e .g .  p . 33 of

[ 3 3 ) .  It  is also shown there that

(4.22) e~~ < e °
~~

76
, A = 0.8

-0.91< e , A =  1

< ~~~~~~~~ A = 1.2

< e~~~~
31, A = 71/2 .

By ( 4 . 1 7 ) ,

—p —~~ * *e = e (1 + C ( X ) A ) ,  I c  ( A ) I  < 0.1, 0 < A < 0.8 ,

so that

e
_rP 

< e
_0

~
9)

~ , ~ < A < 0.8.

He nce ,

f iT 
~~~~ dA

0.8
and

(4.23) f
n
[ rP + e~~

A
)dA C (2.15)r le l.3 5r 

— r~~ e~~
r

By combining (4.12), (4.19), (4.20) and (4.22), we see that

(4.24) 271 1R 3 (r,s ) I  < 2.3 r e .35r2’
~ + 1047

The theorem then follows from (4.5), (4.13), (4.18)—(4 2l) and (4.23-(4.24).

Theorem 4.2. Let r,s and t be nonnegative integers with r > 8; t = r+l . Then

(4.25a) G(rh,sh) — G ( t h , s h )  = (1/41T)log((r 2+s2)/(t2+s2)I + S
1

(r , s) + S
2

(r , s) + S
3

(r , s) ,

where

(4.25b) S
1
(r ,s) — 1

00

(l/2471)(A2_rA 3+A 2e
_A/2

1e
_ (r+l/2)A

cos sX (sA)

(4.25c) S2
(r,s) = - 

0

f
00 

(l/271)((l/30)A4+(7/96)rA 5 + (1/288)r2A6 + (l/l2)A 4e
_V2

] -

0 
—(r+1/2)X

- e cos sA(sA)

(4.25d) s3 (r , s ) I  < (1.9)r 6 + (206)r 7 
+ (0.5)r~~ e~

1.35r213

—11—



Proof .  We have

(iT/2)[g(r ,s)-g (t,s)1 = f n 
le 

t
~~_e r A J A  1

cc’ (s~~) dA + f 71

0 0
where

* - —t p . —I -tA —1 —r p —l  —r A —1J cos(sA) [e ( sinhp )  — e A — e ( sinhp )  + e A

It is known that

(4.26) f [e tA _e~~~]A
l cos (sA)dA = ( l/ 2 ) l o g I ( r 2+s

2 ) / ( t 2
+s 2 ) ]

0
Clearly,

(4.27) f e
~~~ - e~~~Ix~~d < (1/71)r ’e~~~~.

It therefore suffices to estimate 50’ J d A .  Let

* * * 0
(4.28) 3

where

(4.29) 
~1 

cos (sA)[e rA
A l_e rP (sinhp) l

l (l_e P),

(4.30) 5 cos(sA) [e P_e A]e
_
~~A 1

Let t S  ( l .5 ) r 1”3 
. By ( 4 . 1 6) ,

(l-e~~~)[2 sin(A/2] 
1 

= -sin (A/2) + [1 + sin2 
(A/2)]1”2 < 1.

But

—sin (A/2) + [1 + sin 2 
(A/2))1”2 = e /2 + b

1
(A )A

3

where

1b1(A ) I < 1/12 , 0 < A < c

Hence , by (4.14)

(4.31) 
‘0 ~~ = 

~~ 
cos(sA)e

_ 1/2)A 
F(A ) + E

1
(r ,s)

where

(4 .32) 1E 1(r ,s)I < .
~0 

( l/ 1 2)X 3 F ( A ) e t dA < (5 . 8 4) r 6 + 364r 8 + l05r~~°

By (4.17) ,

(4.33) J r ~; = J~ [(1/12) (A 2+A 4) + (l/288)A 5 + C
1
(A )A

6
)cos(sA)e

_tA
dA ,

with 1C 1 (A )I < 0.035. It is easily seen (see also p. 38 of (301) that

(4.34) I I ~ dA l < r~~ e~~~
”5

~~’~ 
2/3 + ( 2 . l 5 ) r le l . lSr  2/3 

— ~~~~~ e~ °’.
The theorem easily follows from (4.19), (4.20) and (4.26—(4.34).

_ _  ±1. 
~~~~~~~~~~~~~ (



Theorems 4.1 and 4.2 rrcvlde accurate estimates for distant values of the undivided

differences of G . One can use these estimates as Dirichlet conditions for a f,st Poisson

solver to generate all the values that are needed to set up the capacitance matrix C . One

can also use integer arithmetic as in [27) to construct a table of values of G for r,s 7.

See e.g. Table II on p. 292 of [27) or Table I on p. 41 of [30). By using the above tables

and Theorems 4.1 and 4.2, we obtain the following.

Theorem 4.3. Let r and t = s+l be positive integers. Then

(4.35) G(sh,rh) — G(th ,sh) = (l/471)log((s 2+r2)/(t2+r2)) + R(a,r)

where

(4.36) IR(s ,r)I < (0 .34)  mm {s 3 ,r 31.

!‘breover ,

7 7 7
( 4 . 3 7 )  max{ ~ max IR(s ,r) I , ~ max ~R ( s , r ) j ,  ~ max IR (s,r)I} < 0.01 .

r=2 s< r s=2 r < s s= r r<s

We next investigate the monotone behavior of the undivided d i f ferences  of G in certain

directions. Let

G
~~

(i
~~j )  S G ( ( i + 1) h , j h)  — G( i h ,j h )

G ( i ,j )  G ( i h , (j + l ) h )  — G(ih ,j h )

By the five-point formula and symmetry,

(4.38) G
xx

(I_l
~

j )  = Gyy
(l~~~_ l )  isO or j �0;

(4.39) 2G (O ,j) = ~ Gyy
(O~~J~~l) j �O

Theorem 4.4 Let r and s be nonnegative integers. Then G(s ,r) , G ( s , r )  , _G
~1

(s , r )

and G~~~(l~ r) — G
yy

(O~ r) are always positive; and Gxx
(s_l .r) is always nonnegative for

r > 5.

Proof. Except fo r the result on G
~~~

( s_ l , r) , the proof f o r al l  the other resul ts  are similar . We

f i r s t  estimate the values of the expression for s = 0 , r > 8 using Theorem 4.1 or 4.2. By

symmetry , the results hold for s > 8, r = 0 as well. We then ver i fy  with the aid of Table II

on p. 292 of (27) that the same results hold for s = 0, r < 9 and s > 8, r — 0. Since the

five point formula is satisfied at all points rh and sh with r>O  and s > 0 , an applicat ion

of discrete maximum pSinciple immediately yields the desired result.

The proof for G ( s— l , r)  is as follows. By symmetry and ( 4 . 3 8 ) ,  we note tha t

G (s , r )  5 0 for  s — r .
xx 

-13—
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By symmetry ,

G (s—l .r) = 2G (O,r)  for  s = 0xx x

An appl ica t ion of the discrete maxLmum princip le therefore completes the proof of the theorem.

This concludes our disc, .,sj on for  undivided differences of G . We now proceed to

obtain better estimates for the remainder terms in (4.8) and (4.9).

The following theorem is an immediate consequence of (4.8) and some well known result of

asymptotic series. See also p. 325 of [ 5 1.

Theorem 4 . 5  Let r be any positive integer. Then

(4.40) G(rh ,rh) = (l/4ir)log(2r
2
h
2
) + (l/48 1T)r 2 + R

7

where

(4.41) I R ’ ! < (7/ l9207T)r 4
.

Theorem 4.6 Let r > 5; r and s are nonnegative integers. Then

(4.42) G(rh ,sh) = (l/471)log ((s
2+r2)h 2] — (l/247t) (r 2

+s
2 )~~~ + (l/ 3iT)r 2

s
2 (r 2 +s

2 )~~~ + L (r ,s)

where
2/3

(4.43) IL (r ,s)I < (2 .5l/ i r) r 4 + (154/7r)r 6 + (l/ iT) log r e l.35r

Proof. As in the proof of Theorem 4.1, we have

f t  1 dA = ft [ O ( A )  — cos ( tA ) ]e ’~~(2 s in (A/2 fl 1F ( A ) d A .
0 1 3  0

Here r — ( l .5) r  , t may be any nonnegative integer. It can be shown that

[2 si n ( X / 2 ) ) ~~~F ( A )  = (1/12) (A—rA 2) — (ll/144)rA
4 

— (43/l440)A 3 — (1/288)r2A 5 + L
1

( r ,A).

Here 1L 1(r,A )I < (0.0 12)A 5 + (O.06)rA
6 + (0.012)r 2

A
7 + (O.0012)r 3

A
8 

. But

re_ax 
xnoos(bx)dx = ri ( (a_ ib) n~~ + (a+ ib) n4

~
hi /2 (a 2+b 2 )~~~~

0
Hence,

r e~~~cos(sA) (1/ 12) (A— r A 2 ) = —(1/12) (r
2+s2) 1 + ( 2/ 3 ) r 2

s
2 (r 2+s2 ) 3 

= (1/24)r 2 ,
0

when r — s

We also have

(4.45 ) (l/72)r [llrA
4 + (43 / 10)A 3 + (l/2 )r 2 A 5 + 144 1L 1

(r , A ) ! ) e  rA dA < Sr 4 + 308r 6 .

Since sinhp l
1 < A 1 for A < 1, we have

I f1TJd?~ f 71 A~~ (e
_X
~ + e~~~~)dA.

But e~~ < e
0 9)t , 0 < A < c. Hence ,

-14—
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2/3 2/3 r n
( 4 . 4 6 )  1 d~~ 

- 2(
l.Sr + .3 5r A 1 d~ I

2/3 2/3— l 5 r  - l . 35r  I<‘ (2/3 )log r Ce + e

By combining (4.40), (4.41), ( 4 .4 4 ) - ( 4 . 4 6 )  and using the technique in the proof of theorem 4.1 to

estimate the remaining remainder terms, we see tha t Theorem 4.6 holds.

Theorem 4.6 also provides a means of generating G(rh ,sh) by means of a fast Poisson

solver on a rectangle using the f i r s t  three terms on the right hand side of Equation (4 .42 )  as

approximations for distant values of the Djrichlet data.

We now describe an efficient method developed in [24) of computing Gv for any vector

v defined on a square mesh 5
h ~ h • with boundary mesh 

~
S

h . Let U
5 

and U~ 5 denote the

ex tens ion  operators from and 
~~~ 

respectively to all mesh points that are defined the

sack way as U . We are actually computing U
’
~ G U~ V. We f i r s t  solve the system of equations

U B U
S4 

= v on S

= 0 on S

f o r  the poten t i a l  ~ . We then extend ~ by zero to all mesh points. We represent 11 as

(4 .47 )  = 

~~~ 
+ GO

~s
P

w h , r e  is an unknown vector defined on the mesh points on ~S to be determined. It is easy

n ,  see t h a t

P = U
~s

B
~P

Th’ vector U~ G U~~ P can easily be computed by One fast Poisson solver on S with U
~s

GU
3sP

as n -h .  O i r i c hl et  data on ~S. Because of the sparsity of the vector , the Dirichlet data

can be computed at  a cost of constant N 2 . U G 
~~~~

‘i is then computed from (4.47).

We now describe a method of computing all  three of the vectors Gv , Gyp and W
T
GV usinq

only two calls of fast Poisson solvers. This may appear to be impossible since W
T
Gv , the

r i gh t hand side of the capacitance matrix equation, must be determined first  and the computation

of Gv alone requires two calls of fast Poisson solvers. We can, however , first compute and

store the vectors ~ and p in equation (4.47). Clearly,

T T T
WGv W~~~ - W G U ~~ p.

But we need only to compute GTJ~~P at those mesh points that WTGV is defined. Hence, the

computation of wTGUasP requires only constant n2 operations. On the other hand , and

GUp can be computed simultaneously with one call of fast Poisson solver with U~~ G ( U~ 5
p+ Up) as

— 15 —
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the Dir ichiet  data On S . Hence our al gorithm of computing all three of the vectors W
T
GV ,

GU~ and Cv requires only calls of fast Poisson solvers plus constant times n
2 

opera tions.

In the methods described so f a r , a fas t  solver on 2W ‘ 2N mesh points is netded to

genera te the discrete Green ’s function or its undivided d i f f e r ences  on a N ~ N mesh S
h

An alternative method is to first generate the undivided differences of G on a N/2 N/2

mesh using a fast solver on N X N mesh points. The values on the remaining mesh points of

S
h 

are computed by using (4.11) and (4.25). An accuracy of eight decimal digits is guaranteed

by Theorems 4.1 and 4.2 if N > 60. A somewhat less accurate but easier to program method is

to generate the values of G on a N/2 ~< N/2 mesh and compute the values on the rest of S
h

by using (1.42) and (4 . 4 3 ) .  An accuracy of five decimal digits is guaranteed by Theorem 4.6

if N > 6 O .

We shall assume in the next two sections that  the G used in the capacitance matrix

equation is the discrete Green ’s function on the entire plane. The main results in Sections

5 and 6, however , will also hold if G = BD’ is used in equations (3.2) and (3.5). See

se ;tion S of [31] fo r  a discussion in this respect.

—16—
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5. Spectral bounds 
~~

We shall show in this section that 8
h 

is un i fo rmly  well condi tioned in the spectral

norm as h -* 0. The following well known lemma is crucial to the proof of our main r e s u l t .

Lemma 5.1. Let the symmetric part  of a matr ix  A satisfy

(A +AT)/ 2  > Si , S > 0

Then

>

Theorem 5.1. (0.25) I < B~ Bh < (7.29)1 for scheme l.a

(0.25) I < B~ Bh < (13.7)1 for scheme I.b

(0 .04 ) I < B~ Bh < (5.57) 1 for scheme II

for all sufficiently small h > 0.

Proof. We shall first prove that the following holds for scheme lb.

(5.1) I 
~ 

8h ~

Let B S B + ~
T We shall  show that

s h h

(5.2) mm {B (p ,p) — ~ 18 (P,Q)I} > 1
QCB))

h~
Q
~
P

so that (5.1) holds because of a well known Gerschgorin theorem. The inequality

I < B~ Bh

will then follow from Lemma 5.1.

Let P e 
~~h 

Assume that the local orientation of the boundary near P is such that

for any point P ’ 
~ ~~h 

in that neighbourhood , either W’ and N’ , the western and northern

neighbours of P . , are both in 
~~~~~ 

or W’ a lone is in (Cf) )
h

. Let ct1, , be the angle

< nn/4 that the normal through P’ makes with the x
1 

ax is in the east—west direction. By ( 3 . 5 )

and (3.9), we have , for P 
~ Q

(5.3) 8
h~~
”
~~ 

= 2[G(Wp ;WQ
) — G ( W~ ;Q)] + 2 tancz~~[G ( W ~ ;NWQ

) — G (W ;W
Q

) )

if P has only one neighbour in (CQ)
h
. Here Y~, denotes the immediate neighbour on the mesh

for any point P in the Y direction. Similar expressions to (5.3) are easily obtained when

is also in 
~~~~~ 

or when P 5 Q . If p E (j h , kh) , Q 5 ( nnh ,n h ) ,  then because of transla-

tional invariance , G(P;Q) S G( (j-m (h ,jk—njh)

Assume that 0 < nt < 71/4 and that (~~3 ) , which denotes a subset of ~C that
P h loc h

contains a Ih neighbourhood of P , can be partitioned into blocks as follows. Let

—17—



1
0 

= {(o,h) . (0 ,M
1
h)}

= {(kh,M.K
h
~

h)  . (kh ,r4k+lh)}, k =

= {(_kh _M
(k l ) h 

(_kh ,_M
k
h+h)}, k =

Then,
K 1

(~l2 ) = ~~ I , P s I
h ioc K=-K

2 
k 0

Note that M.K 
— M.K 1  gives the number of points in ‘k— l ’ k = 1 K

1 
while M.~k 

— M_ (k_l)

gives the number of points in , k = 1 K
2

; M
0 5 0.

Let P. denote the point with x
2
—coordinate jh. From (5.3) and Theorem 4.3, it is

easily verified that ~ B (P ,Q)I will remain essentially unchanged for sufficiently
Q~P 

~

smooth ~3ll if tan is replaced throughout by tancx~~. Let a S tana5. Let p 5 P . and

G(i,j) S C(ih,jh). We shall assume that P ~ P unless otherwise stated. We easily verify
M
1

that for P . c I
j 0

(5.4) B ( P ,P) = 3+a,

(5.5) - B (p,P.) = —4(l+a) G
~

(O ,Ii_j
~~

, j  ~ i , j  ~ M1
(5.6) B (P,P ) = — 2( l+a )  G (0 ,M —i) + (1—a) G (0,M —i).5 H

1 
x 1 yx 1

By (4.39), we see that for P . € 10

(5.7) 
•~~

B
5
(E~.I~ ) —2(l+a)[2 G~ (0~O) — G~~(0~~M

1— i )  — G
y

(O~~ _l)]
13~]

+ 2 ( l+ a )  G (O , M —j) + (1—a) G (0 ,M —i)x 1 yx

For P. e I , k = 1 K , we have
j k 1

(5.8 ) B ( P ,P.) = 2(l+a) G (k,j—i—l), j  
~

(5.9) B~~(P~P~ ) = (l+a) G
yy (k~~

_
~
_l) + (1—a) G~5(k .i~ i)~ i = M

k+l

(5.10) 
P .elk 

B(P ,p~) = — 2 ( l + a )  [G
y Ck lMk

_ I )  — G
y Ck

~
P&k+l~

i)l — (l+a)G
yy
(k
~
M.K+1

_i_l)

+ (1—a) G (k ,M. —i)yx K+l

By Theorem 4.4, ie see that each B (P,P.), j ~ i, j C 1, is negative. Hence
K 1 ~

(5.11) B (P,P ) = 2(l+a)[G (l,M —i) + G (k,M.K+ 
—i)]

k=l P. I ~‘ k=l yx 1
j k K1 K

1
—(1—a) 

k~ l 
Gyx (k

~
Mk+l

_i) + (l+a)
~~~

G
~ , (k ,M.K 1

_ i_ l )

C 2 ( l+a) G (l ,M
1
—i)

Similarly,
K
1

(5.12) 
~ lB (P,P4)l C 2 ( l+a ) G (1 ,1—1) + ( 1—a)  G (0 , i — 1) .

k— 1 P€ I  Y y
j  —k

—18—



By combin ing  (5 . 7 ) ,  (5.11) and ( 5 . 1 2 ) ,  we see that

( 5 . 1 3)  
~ 

lB (P ,P .)I C 4(l+a) G (0,0) + (1—a)  G (0,i—1) < (5+3a C (0 ,0) = 5/4 + 3/4a
~ y y

Here we have used ( 4 . 5 ) ,  ( 4 . 6 )  and Theorem 4 .4 .  Hence , by ( 5 . 4)  and (5 .13) , we see that

(5.2) holds for P € 

~0 
P 

~ 1
The proof for P 5 is quite similar and is sketched as follows.

1
( 5 . 1 4 )  B (P , P) = 2+2 ( 1—a) G (0 ,0)

S xy

(5. 15) 
~ 

8 (P ,P . ) I  = (l+a) [G (0,0) — G (0 ,M — 1 ) ]  + ( l — a ) [ G  (0 , 1) — G (0 ,M )];
5 J y y 1 x x 1P d

(5.16) 
k=l 

~
‘j~~

1
k 

= (1_a) [G
~~

(O
~

O) + 
k=l ~

Gxx
(k_1

~
Mk+1

_M
l
) — G

yx
(k .M.K+l

_M
l
)})

+ (l+a) [G (1,0) + ~ 
{~ (k,M. —M ) + G (k,M. —M —1)}];

k=l yx x+1 1 yy K+l 1

(5.17) 
k=1 1’

j~~
1
-k 

= (1+a)[G~~(l .M1
) + 

~ =1 ~~~ 1
M.~ + G

ff
(k
~

l4
l
+M

k
_l) 

~

+ (l—a) [G (l ,M ) # ~ {G (k,M +M ) — G (k—1 ,M +M —1)}1.x 1 
k=l 

xx 1 —k yx 1 — (k—i)

By (4.38) and Theorem 4.4, we see that

(5.18) ~ IS (~~,P.)j < ( 1—a)  G (0,0) + (l+a)  G (1,0).
k=1 P .sI S 3 — x y

3 k
Similarly, by using the identity (5.20) , we have

(5.19) 
~ B (P ,P ) j  < (1+a)G (l,M ) + (l—a) [G (1,M ) — G (0 ,M —1)1

k=1 P .€I ~ 3 — y 1 x 1 yx 1
j -k

(5.20) C (k ,M +M —1) S G (k+l ,M +M -1) + C (k ,M +M —1) — G (k,M +Myy 1 -k yy 1 -k yx 1 -k yx 1 —k

Hence ,

(5.21) ~ lB (P ,P . ) l  < 2G (0 ,0) + 2G (0,1) + aG (1 ,M
k—i ~ — x x y 1

By combining (5.14) and (5.21), we have

(5.22) B (P,P) — 
~ lB (P,P . ) I  > 2 + 2(l—a)G (0,0) — 2G (0 ,0) — 2G (0 ,1) — aG (l ,M ) .

S 3 — xy X X y

Clearly, the right hand side of (5.22) attains its maximum at a = 0. Hence, (5.2) holds for

The proof for other choices of P is similar and will not be repeated. We note

that we have assumed that B(P ,Q) ~ 0 for any Q 
~~~~ h~1oc 

This assumption will not

affect our estimate (5.2) because each B(P ,Q) is either zero or negative for P ~ Q.

Finally we remark that the schemes Ia and lb described in this work are essentially

dual to the schemes l.N.a and I.N.b described in (31 ) in the following sense. If we

maintain that a S tafl~~ does not change its value for the entire row or column of Bh

-19--
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corresponding to P, then 8
h~~~

’2
~ 

is the same for both s~ hemes Ia and I.N.a. or for both

schemes lb and I.N.b. Therefore we refer the reader to 131) for the proof of Theorem 5.1

for scheme l.a. We now proceed to ;,rovn the following inequali ty for scheme II .

(5.23) mm {B (P,P) — ~ P (P ,Q) I~ 0 .41
P Q~P ~

Let P € We assume the same local configuration of irregular mesh points near F~

as before . By ( 3 . 5 )  and ( 3 . 7 ) , we have for  d
2 

1 , p ~

(5.24) B
h

(P ,Q)  — _ G
X

(W
P

;W
Q
) — e1 G ( E ~ ;W

2
) + a I G ~~(W ~~;W Q

) + e1 C~~(E~~;W
Q

) ]

where

(5. 25) e1 
S ( l— d

1
)/ (1+d

1
) ,  a S tan

Here C ( ; ‘) and C (~~ ; •)  denote the forward undivided differences in the x and x direc-x y 1 2

tion with respect to the second variable of any mesh function C respectively. A similar expres—

wion involving e
2 which is similarly defined or a constant one should be added respectively to

the right hand side if d2 
C 1 or if p 5 Q~ 

Let e1. and e2j denote the corresoondino e1

and e2 
respectively.

Let P 5 P.. We first estimate 
~ ~ 

(P ,P)I + I B T
(p ,p . ) I } .

h j h j
1 3  -‘3

Let 
~~~~~~ 

be defined by Equation ( 5 . 2 4 )  with G replaced by its continuous analog which we

shall denote by C . B
h 

(P,Q) is similarly defined. By (5.24) and (5.25), we have for d2 
> 1

and P 
~ Q

(5 .26) B.~ (P~Q) = (2/(l+d
1
)] [—G (W ;Q) + ( 1_ a)G (W ;W

Q
) + a C (W ;NW

Q
)I +

= (2/ l+d
1

) )  [G (W ;W ’ )  — C ( W ;Q ) ]  + +

where

(5.27) P~~ S r a /(l+a 1) J - r  
k=2 

(h k / k ! ) ( ( d 1
_ l) k + (d

1
+l)k]

+ ( l_ a) G ( . ; W
Q

) + aG (.;NW)}) (Wfl}

+ nth order remainder term .

2 2 * * 2 *  *
(5.28) R~ S (h a(1—s)/(1+d1

) ) ~ a[(a/ax
2
) G (W ;•fl(NW

0
) + ( l — a ) [ ( a / a x

2
) G (W ;~ fl (NW 1

) ) .

Here WA is the point were the Dirichiet data is given. W’ is a point on the mesh line

connecting W
Q 

and NW
Q and at a distance ah from W

Q
. NW0 and NW

1 
are respectively points

that can be anywhere on the mesh lines between W’ and W
Q 

and between W’ and NW
0
. We

shall assume that d
20
. the analoque of d

2 
for the point 0 , is also greater than 1 . In

that case , we have a similar expression for 5~*(p ,Q) as that in (5.26).
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We now proceed to estimate B~~~(P,Q) + 
~~~~~~~ 

. It is easily verified that if

p ,ç( are two points on ~
Q with i ( P .Q) < h1, 0 < I 1 and ta is the tangent at 9 to

then

d(P,ta) < (K + o ( l ) ) h ~~~.— max

Here K is the maximum absolute value of the curvatures of ~(3. Hence , without loss ofmax
* *

qenerality, we may assume that W lies on the tangent to 31) through 9 , the poin t  where the

normal through Q intersects with ~S3 and vice versa. Let r denote d(W ,Q) and r ’ denote

* * 2d (W ,W’). It is easily seen that r ’ > r if d(Q ,Q) < h(1+a )/2. We separate our discussion

* 2
into four cases. The first case is when r’ > r and d ( P ,P ) < h(l+a )/2. The maximum of

* 2 2 2 2log (r ’/r) then occurs when 9 coincides with Q . In this case, r ’ - r = (1+a )h . Hence ,

if P 5 P
~~
, Q S P .,  i 

~ 
j ,  then

* * * * —20 < G (W ; W ’ )  — G (W ;Q) < ( 1 / 4 1 1) Ij — i l

By (5 .28),

- (l/8fl)li-j1 2 < R
Q 

< 0 ; if j  > i

— (1/871) I i — j — l 1 2 < < [a(1—a
2
)/V’~ (l +d

1
)1T] (1+a

2
) 

3,’2 li—i — l I 3 ; if i >

Similarly, by (5.27),

(1+d
1
) l~~I < (2/s ) l i — i l~

4

Hence, for li— i l > 3,

(5.29) (1+d
1
) IBh (P ,Q) I < (1/211 ) li— i l~

2 + (1/511) l i — i — l 1 3 + (2/11) li il 4, if i >

< (1/211)Ij-i1
2 
+ (2/1T)Ij-il 4, if ~>i

* 2 TA
Since d(P,P ) < h(l-~ )/2, the estimate for B

h 
(P ,Q) is the same as that given in

(5.29). Hence ,

TA * —2 —4 —3
(5.30) 

~h 
~~~~~~~~~~ 

+ l B h (P ,Q) I < (1/71)11—il + (4/~)li — i l + (1/511)11—i—l I

* 2 *
The second case is when r r ’ and d(P,P ) < h ( l+ a  )/2. Let d

19 
denote d(Q ,Q)/h.

Then d
19 

> 1/2. Hence by (5.29),

TA —2 —3 —4

~h 
(P,Q)I (1/311)11_il + (2/15 11) 11—i—l i + (4/311)11— if , if j  > i

(l/ 3~) j - i l 2 + ( 4 / 3 f l )  Ij - i l
4 , if i > j

On the other hand , the maximum of log n t ’ occurs when Q coincides wi th  W
2 . In th is

case, r - r ’ 2 
= (l—a

2)h 2. Hence ,

* * * * 2 2 —2(W ;W’) — G (W ;Q) < (l/4in)[ (1—a )/(l+a ))I j— i l , if j > i

< (1/471 ) [ ( 1— a 2 ) / ( l-4 .a2 ) ) l  i— i— al 2, if  i > j

— 2 1—
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and

(5.31) lB h
(P,O) I < [(1/211) + (1/8r)J l1— i 1 2 

+ (2/IT) li— m r 4 if I > i

(1/2 ) Ii- i 1 2 + (1/811) 1_ i_ l i 2 
+ (211) Ij - i I 4, if i > j

Therefore,

(5.32) JB~~ (P ,Q)l + J B h
(P ,Q) J < [(1/3ii) + (1/211) + ( l / 8 1 T) ) ij _ i [~

2 
+ (4/311)J li- i l 4

+ (2/l511)li—i—1 [
3
, if j > i

[(1/211) + (1/3 11)) li-iL 2 + (1/811) li-i-il 2

+ [(4/ 3 71)  + (2/11)1 lj— i 1 4, if i > j
* 2 *The third case is when ~ < r and d ( F ,p ) >h(1+a )/2. The estimate for I B h (P ,Q) I +

TA
+lBh (P ,Q) I is the same as that for the second case.

* 2The fourth case is when r > r ’ and d ( P ,P ) > h(l+a )/2. Both d
1 

and d1Q are not

less than 1/2. Therefore by (5.31) and the above observation ,

T* * —2 — 2(5.33) B
~ ~,Q)l + lB h (P

~
Q)l < (2/311)11—il + (1/1211)11—i !

+ (1/1211) li-i L2 
+ (8/311) li-iL 4

By comparing (5.30), (5.32) and (5.33), we see that

TA * —2 —4 —3max 
~h 

(p,Q) l + IBh (P ,Q
~ 

< (1/11)11—i l + (4/11)Ii—il + ( l / 5 1 1 ) lj — i — l j  if i > ~-

~ (1/11)Ii-iI 
2 + (1/811)lj-i1 2 + (l/511)Ij-j-11

3 + (4 / 1T ) l i - i l 4

if i >

Hence , if d
2
, d

29 
> 1, then

~ lB~~(P~r’ .l + lB~ P,P . I  < (1/iT ) ~ {2/k
2 
+ 8/k4 + 2/5k

3 + l/8k 2 }
li— ih .3 3

< 0.328

Similarly,  it can be shown that if both d
2 

and d
20 

are not greater than 1, then

(5.34) ~ B~~~(P ,P.)~ + lB h (P ,Pj)l < 0.677.
lj— i l>3

By Theorems 4.1-4.3 and Table I on o. 41 of (30) ,

~ 
fIB~ (P,P ) — B

h
(p, P . ) l  + lB~ (P ,P .)l } < 0.04

l i— j I<3
Hence

(5.35 ) 
~ { I B h (P ,P . ) l  + B~~(P ,P )l } < 0.717

lj -il~.3
It remains to estimate B(P ,P) — ~!B (P ,P

1
) l , l i —il C 2, i ~ 1 . Without loss of generality,

we may assume that both d and d 2 are less than 1. We shall assume that p 5 p~ S wi th
1 1

> 3 and M , > 5. The case when i ~ M1 
can be treated in a similar manner . We have
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(5.36) B (P,P) = 2 + 2 (1 -a )  G ( 0 ,O) + g0
(a)

where

g (a) 11 2 e [C (1 ,0) + C (2 ,0 ) ]  + 2 e [C (0 ,1) + a G (1,1)].
0 l x  y 2 x

For any P . c l
o. i ~ M~ , we have

8
5
(P,5

1
) = g

1
(a ,j )  + g

2
(a ,j )

where

S G ( 0 ,j—j ) + a C (0,i—j—l) — a G ( l , i —j )  — G
x

(O
~~

_l)

g
2

(a ,j )  S e
i

[C
x

(l ,i_ j) — a C (2,i—j—1)] + e
ii

[C
x

(l .i_i) + a C ( 2 , i — j ) J

+ e
2

[G
~~

(0 ,i_j_1) — a C(l ,i—j—2)]

For any P . s I
l , we have

= g3 (a ,i) + g
4

(a , i )

where

g
3

(a ,j) S =G
~~

(O ,j_i_l) + a C (1,1—i—i) + a G(0 ,j—i—1)

g
4

(a ,j) S e
1

(C (0 ,j—i) + a C (1,i—ifl + e2
[—Cx ( 0 , 1— i+l)  + a G(0 ,j—i+l)]

+ e. .[C (2,1—i) — a C (3 ,1—i—i)].
13 X y

By Theorem 4.4, g
1

(a , j )  is negative. It is easily verified that g 2
(a , j )  is nonnega-

tive for 0 < i— j  < 2 ; g
3

(a ,j) is negative for a < 1/2 ; and g
4

(a ,j) is positive. Moreover,

for a < 1/2,
2 2

(5.37) - ~ 1g 1(a,i) + g
2

(a ,i)I + ~ 1g 3
(a , i )  + g4(a ,j)I

1 3 1 j i l

2 2
< g

0
(a) + ~ g1

(a , j ) j  + 
- ~ lg~(a .i)l .
J— 1=l

Hence, for a < 1/3 , > 3, M
2 

> 5, we have from (5.37) that the following holds.

( 5 . 3 8 )  B ( P ,P) — ~{lB 5
(p ,p

1
)l , i ~ 

j, li—il < 2)

~ 
2 + 2 ( l_ a ) G

xy
(O .O) + ~ g~~(a , j )  + ~ g 3

(a ,j )
i—j = l  j—i=1

> 2+2(l—a)G (0,0) — C (0 ,0) — 3C (0 ,1) — C (0 ,2)  + C (0,3)— xy x x x x

> 1.17.

By considering all possible configurations of P ., ~-i < 2 , a > 1/3 , it can be shown

that the constant 1.17 is always majonized by the l e f t  hand side of (5.38). It is easy to see

that (5.38) also holds when P. ~ . Hence by ( 5 . 3 5 ) , we see that (5.23) holds.
1

This established the lower spectral bounds of 5
h 

for all schemes. To complete the
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proof of the theorem , we note that the spectral norm of B
~

B
h 

is major ized  by (1/2) (ljB~il~ 
+

II 
~h

11 )
2~ ~~ therefore suf f ices  to prove t~ fo l lowing  two inequalities

(5 .39 )  II B~,lI~ + II Bh fl < 7.4 if scheme I .b is used

(5.40) II B~lI + II Bh II < 4 .72  if scheme II is used .

We f i r s t  prove that (5.39) holds. Without loss of generality we may assume that

P € 3Q.~ has only one western neighbour N in (C1))
h
. Let P 5 (0,0) and P . 5 (x ,y), be in

Then x = ay + b, bl < (l+o(1))h if d(P,P
1
) < 4~. And

* 2 2 2 2 2 2B
h
(P,P .) = —(1/2 11)log [ (x+h) +y ] + (a/211)log[x +(y+h) I + [( l —a ) /2 1 1) l og ( x  +y

= (1/211) [2h(x—ay) + (a—l)h 2]/r2 + R,

where r = d(P,P. ) and RI < (1/211)[(2x+h )2 + (2y+h)2)h
2
/2r

4. It is easily verified that

(5.41) 
~ lB~ (P ,P .)l < 1.25 if l~I > 2h

p~ p
i 

3

By Theorems 4.1—4.3 and the Table I on p. 41 of [30],

(5.42) B
h

(p
~~~ 

= 2 — (1/2) (1—a)

(5.43) 
~ 

IB~~
(P ,P.)I < 0.28 + 0.55a/2

lyl<2h

(5.44) 
~ ~h

(l
~~

P )  — B
h
(P,P.)l <0.06

ly l~ 2h

By (5.41)—(5.44) ,

~ 
B~~(P , P , ) ~ < 3.7.

It is easily seen that the above inequality also holds when B
h 

is replaced by B~ . We have

therefore completed the proof of (5.39)

le t  P p
m
. By (5 .36) ,

(5.45) F~~
(P ,P)l < 2 + 2 ( l_ a ) G

xy
(O .O) + g0

(a)

By (5.37) and ( 5.45) ,

(5.46) 
. ~ lBh (P ,Pj)l + lB ~

(P ,P
i ) l  C 2+2g0 (a) + 2G (0, O) + 6G (O ,l)

C 4 .

By ( 5 . 3 5)  and ( 5 . 4 6 ) ,  we see that (5 .40)  holds.
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(5.36) B (P,P) = 2 + 2 ( 1 — a )  G (0 ,0) + g (a)
5 xy 0

where

g (a) 11 2 e [G (1,0) + C (2 ,0 ) )  + 2 e IC (0,1) + a C (1 ,1)] .0 l x  y 2 x

For any P , e 
~~~ ~ # M1, we have

B P ,P.) = g
1

(a ,j )  + g
2

(a , j )

where

g
1

(a ,j )  S G (0 ,i—j) + a C (0,i—j—l) — a G(l ,i—j) — C
~

(0
~
i_i)

g
2

(a ,j )  S e
1

[G (l ,i—i) — a G (2,i—i—l )] + e
11

[C
~~

(l .i_ i)  + a G ( 2 , i— i ) ]

+ e
2

[C
~~

(0 ,i_j_l) — a C(l ,i—j—2)]

For any P . € Ii , we have

B ( P ,P .)  = g 3
(a ,j )  + g

4
(a , i)

where

g 3
(a , j )  S —G (O ,j—i—l) + a G

yy
(l~~l_ ~

_ l) + a G~~(0 .i~ i—l )

g4
(a ,j )  S e

i
[C

x
(O , j _ i )  + a G (l,i—i )] + e

2
[—Cx (0 ,j — i+1) + a G ( 0 ,j—i+l)]

+ e . . [ G  (2,1—i) — a C (3,j—i—1)1.
13 X

By Theorem 4 .4 , g
1

(a ,i )  is negative. It is easily verified that g2
(a ,j )  is nonnega-

tive for 0 < i— i < 2; g 3
(a ,j )  is negative for a < 1/2; and g

4
(a , j )  is positive. Moreover ,

for a < l / 2 ,
2 2

(5.37) ~ lg 1 ca ,j) + g2(a,i)I + ~ g~~(a ,j )  + g4(a ,j)l
1 3 1  j i 1

2 2

~ g0
(a) + ~ g1

(a , j ) j  + ~ g 3
(a , j ) l .

i—j=i

Hence , for a C 1/3 , M
1 

> 3 , M2 
> 5, we have from (5.37 ) that the following holds.

(5.38) B ( P ,P) — I{IB (P,P.)l , I ~ j ,  l i —i l < 2)

2 2
> 2 + 2 ( l — a ) G ,~ (0 ,0) + ~ g1

(a.j) + ~ g3 (a ,j )
i—j = 1 j—i~ l

> 2 + 2 ( l — a ) G  (0 ,0) - G (0 ,0) — 3G (0 ,1) = G (0, 2) + C (0,3)
— xy x x x x
> 1.17.

By considering all possible configurations of P ., i-j < 2 • a > 1/3, it can be shown

that the constant 1.17 is always maj orized by the le f t  hand side of (5.38) . It is easy to see

tha t  ( 5 . 3 8)  a lso holds when P . ~ P • Hence by (5.35), we see that (5.23) holds.
i

This established the lower spectral bounds of tmh for all schemes. To complete the
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6. Singular values of Kb and C

We shall show that all except a few singular values of C lie in the i nt ~~i -i-j l

[d
1 

— c , d
2 
+ ri , t 0 , where d

1 
and d 2 

are the spectral bounds of B
h
. This is accomplished

by f i r s t  proving that  the singular values of K.~ cluster around that of a compact operator K

Our main result then follows as an immediate consequence of a well known result in matrix theory

which will be stated below as Lemma 6.8. We first need some definitions from modern analysis.

Let X denote a Banach space throughout this section.

Definition. A subset S C x is sequentially compact if any sequence in S contains a convergent

subsequence with limit in X

Def in i t ion .  A f amily of operators K on X is collectively compact if the set {K f:Ilf 11 <1 ,

f € X , in = 1,2 , ... )  is sequentially compact in x

We shall f i rs t  assume that either scheme l .a or scheme I .b is used. We start by con-

structing a family of operators {K } from {K.0
) in the same way that is done in Section 5 of

[32]. For completeness , we briefly sketch this construction in the following. Define

K :  C[0,1] -~ C( 0 , 1) by

(6.1) [K
m]

f(t) = ~ k(t ,t .) f ( t ,), t. € [0,1]; f € Ct0 ,1],
j=l ~

where

( 6 . 2 )  k (t ,t.) = K
h

(P .
~~
P.) + [ (t_ t

i )/ ( t m 1
_t

~~
) ) [Kb(P m i ,P

i
) — 

~~~~~~~~~~~ ~~~~ < 
~ 

< 
~~~

C[0,ll is the Banach space of continuous functions on [0,11. The t ., i = 1 in

are defined as follows . Let ~ ,IP be a smooth parametrization of 312. Then (q (t.),14 (t. ) )  is the

closest point on 31) to P . c which is on the normal through P .. When t is very close to

0 or 1 , the k ( t, t .)  in (6.2) should be adiusted slightly . See [32] for the details. We can

construct by the same procedure a family of operators {K ~~) from {K ~ 1. Let K5 
S K~K5

Lemma 6.1. The nonzero eigenvalues of Kb’ K.~+K~ and X~ K.1~ coincides with that of K
~
.

K +K’ and K respectively.
UI UI S

Proof: See e .g .  Lemma 5.2 in [ 3 2) .

Lermna 6 .2 .  Let F and Q be two points in 31)h with d (P ,Q) = h~~, ~ < 1/2. Let P and Q

the closest points on 312 to P and Q respectively . Then

* * * 2—28
= 213C /3VQ* ) ( P  ;Q )hsec~~ + O(h )

Proof: Essentially the same as that of Lemma 5.4 in [31) .

— 2 5 —
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Lemma 6.3. The families of operators 1K~~~,{K} and 1K )  are collectively compact on C(0,lJ .

Proof:  Essential ly the same as that r f  Lemma 5.5 in [3 2 ) .

Lemma 6 .4 .  K f  Kf , K ’f  * K
Tf ano K f  ~ K

T
Kf for each f € C(0,lJ  where K is the compact

integral operator defined by

(Kf)(t ) = 2 f [3G /3v 1(P;Q)f ds
P Q 9

where P 5 (c~(t~~)~~l)( t~~) .

Proof: Essentially the same as that of Lemma 5.6 in [32]

In order for the above theorems to apply in the case when scheme II is used , we scale

the matrix Kb in that case as follows . The rows of Kb that correspond to irregular mesh

points that have one or two neighbours in (c
~
l)
h 

are multiplied with (1+d 1
) or

(l+d
1

) (l+d
2
) (l+d

1
+d
2
)~~ respectively. It is easily verified that Lemmas 6.3  and 6.4 hold for

scheme II if K is constructed from the scaled K. . It will  be shown af ter  theorem 6.1 thatin n

such a scaling is not e—sential and our main results will hold even without it.

Lemma 6.5.  Let {K} be collectively compact on X ; K
n f -

~ Kf for each f € X. Given t > 0 ,

let ii
~~ 

with algebraic multiplicities in . ,  i 1 N be the eigenvalues of K with absolute

values greater than or equal to C > 0. Then there exist  positive numbers N and t < c

such that for all n > N each c neighbourhood of i-i a 
contains exactly in . eigenvalues of

K while all the other eigenvalues of K lie in an c—neighbourhood of zero .n n

Proof: This is an immediate consequence of Theorem 4.8 on p. 65 of [1) . See also Chapter 4 of

[30] . By cowbining Lemmas 6.1, 6.3, 6.4 and 6.5, we easily have the following.

Theorem 6.1 Given C > 0, there exists a positive integer N such that for all h > 0 , all

except N singular values of K.~ lie in [O, e] .

Lemma 6.6. Let C AB , where A , B and C are arbitrary matrices with singular values

a > a ... > a > 0, ~ > B >...> B > 0 and ‘ > y > .. .
~~ 

y > 0 respectively, then1 — 2 —  — i n—  1 — 2 —  — i n—  1 — 2 —  — i n—

i ,j  positive integers .

Proof : See e.g.  Exercise 28 on p. 89 of [23 ) . An immediate consequence of Lemma 6.6 is that

Theorem 6.1 holds in the case when scheme II is used even if the matr ices C or 
Kb 

are not

scaled by the scaling described j t~~t before Lemma 6.5.

Lemma 6.7. If D = A+B , where A and B are as in Lemma 6.6 , and 
~1 ~ ~2 ~- • > 

~ 
> 0 are

the singular values of D , then

~ 
a~~~1 + 

~~~ 
, i ,j positive integers.

—26—
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Proof: See e.g. Exercise 30 on p. 89 of 123] .

Theorem 6 .2  Let d1 and d
2 

be the spectral bounds of Bh. Then given r > 0, there exists

a positive integer N independent of h such that all except N s ingular values of C lie in

Proof: An immediate consequence of Lemma 6.7 and Theorem 6.1. See also Theorem 5.3 in [ 3 2 ] .  In

the followiny, ii shall denote either the spectral norm of a matrix or the Euclidean normof a vector.

Lemma 6.8 Let Ti be the extension operator from 12
h ~j 

~~h 
ot all mesh points that is defined

the same way as U . Suppose that 0
AT 

~ ~ 0 for any nonzero rn-vector ~j defined on

Then C is nonsingular.  Moreover , if U G vull > c1ll ‘~!I /11 A for any in—vector ii

then II C 1 l1 < r (A
11)/C

1
, where K (A

11) is the spectral condition number of A11 with respect to

the norm Ii II
Proof: Let Au = v = UTJ

T
v with gTv in the range of C be the equation we are solving.

From Section 3, we see that u = GVP is a solution of Au = v if ii satisfies Equation (3 .6) .

Suppose C is sinqular so that there exist two distince solutions and 
~2 

of Equation (3 .6) .

- AT
Let 

~l~~~2 
• Then AGVP

0 
= 0. Because of the reducible structure of A , A11U GVUQ = 0.

*T
This contradicts the assumptions that A11 is nonsingular and u GV(J~ ~ 0. Moreover, if

II ~~~~~~ > c1~ 
-l 

A
11 l1 then 

ATA
11ll II u vll ~ Il u Gvp ll ~ c~Il ul l /11 A11II

The lemma easily foliows .

Definition. A scheme of interpolating boundary conditions is said to be admissible if its cor-

responding coefficient matrix A11 
of the discrete problem is nonsingular and K(A11) <

constant h
2

Lemma 6.9 Let C and A denote respectively the capacitance matrix and the coefficient

matrix of the discrete problem for a certain scheme of interpolating boundary conditions. Suppose

that both C and A are nonsingular . Then C is nonsingular for any admissible scheme of

interpolating boundary conditions. Moreover, if d l  < c
2 

and II A * lI < c
3 U A1111

then II C ’II < c
2
c
3
€(A 11

).
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* *
Proof: T

~e first claim that if both C and A are nonsingular , then there exists no U ~ 0
A T *

such that U GVp = 0 . Suppose this is not so, then there exists a u ~ 0 such tha t

AT A * T A  * * T A  A
U GV)J = 0. Let v = UU v where C p = U v . Since C is nonsingular , U v j~ 0. But

*T* *T * A *~~ A
U V = U AGV)J = A U GVP = 0

A — i
This proves our claim. By Lemma 6.8, C is nonsingular . Suppose now that II C II < c2 and

II A l l  < c~[f A11~l . Let Au = v = UUTv. Clearly ,

~~~ T A _i A ATl u ll < C i ll U vii < C Il l! A I l l  U GVPII

Hence,

U~~ GV)4~ ~. II u ll /c2c3 11 A~~ II.
The lemma easily follows from Lemma 6.8.

oefini tion ~ is said to be in ~ (6) if the associated integral operator K defined by

Equations (2.2)— (2.3) is such that K + K
T 

~

Lemma 6.10. All ellipses with thickness b/a > 1/3 are in ~~(1). Here a and b are re-

spectively the major and minor axes of the ellipses.

r~~ef : An immediate consequence of (2.5).

Theorem 6.3 Let G = B
D
1 

be the discrete Green ’s function used in equations (3.2) and (3.5).

Then the capacitance matrix C is nonsingular and C~~~ < constant for some positive

integer q independent of h

* *
Proof: It suffices to find a pair <C ,A > that satisfies the hypothesis of lemma 6.9. Assume

that the dir ference equations are already preordered in such a way so that

B11 812 0

B =  ( B21 822 B23

0 B
32 B33

where the f i rst, second and last rows of B in block form correspond to the coefficient matrices

of the d i f f e r e nce equations on 
~h

’
~~~h 

and (C 1))
h 

respectively.

Suppose that in forming A we use a zero order interpolation of Dirichlet data on 312

at 
~~
‘h 

to obtain the equations on 3ç(.~. 
Partition V ,A and C in the same way asB. We obtain

(0 ~~ (B11 B12 0

(6.3) V = V2 ) and A = 0 I 0

V
3 J \o  B

32 
B33

so that the capacitance matrix which we now denote by C
D 

sa t i s f ies
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(6.4) C0 
= G22 V2 

+ G
23 

V
3

Let

811 B
12 

0 

~ v’~
A
8 

= : 
~32 S

33~~~ 

A
1~ 

~~~B32 8
33

It is easily seen that A
18 

is the coefficient matrix of a discrete exterior Neumann problem ,

with the normal derivative approximated by the f i r s t  order scheme described on p. 203 of ~l3)

Hence AN is nonsingular since both 8
11 and A iM are nonsingular  and AN is reducible.

Clearly,

(6.5) A
8 

= B + ~~
T - uuT8

Let u.1~ 
be the solution of

(6.6) A
8
u
8 

=

where f8 is any mesh funct ion that vanishes outside 312
h • Suppose we make the Ansatz that

(6.7) U
N 

= B
1 

Up

where p sat isf ies

(6.8) u
T 

A
N 
B

l 
Up = u

T 
f

By (6.5), (6.7) and (6.8), it is easily seen that (6.6) is satisfied. Let C
N 
S u

T 
A
8 
B

1
U. It

is clear that C
N 

is nonsingular . By (6.4) and (6.5), we have

T
C = DN D

so that C
D is nonsingular. Moreover , using an argument similar to the proof of lemma 6.8 , we

have

= lic~~ll <
D N —

for some positive integer q independent of h . The Theorem easily follows.

Theorem 6.4 Let 12 € ~~(l). Assume that the C in equation (3.5) is the discrete Green’s func-

tion of the entire plane. Then II C~~~ < constant h 2 as h 0 for any admissible scheme

of interpolating boundary conditions. Moreover, II c~~ii < constant as h * 0 if either scheme

• l.a or scheme I.b is used or if scheme II is used and 12 € ~ (0.4).

Proof: Let (3 c ~(l). Assume that either scheme l.a or scheme I.b is used for interpolating

the boundary conditions. By (5.1) , + > I. By assumption , there exists an € > 0 such

that K + KT > —I + ~ • By lemmas 5.1 and 6.3—6.5 , we see that for sufficiently sma l l h
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K
h 

+ K~ > —I + c/2. Hence , C + C T 
> €/2 and II C ’ll < constant as h + 0 . Similarly ,  it

can be shown that  II c 1ll < constant if scheme II is used and 0 € 3(0,4). By lemma 6.9 ,

II c 
l~ < constant . h 2 

for any admissible scheme of in terpola t ing  boundary conditions.
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~7. Convergence of conj ugate gradient  iteration.

Let b denote the right hand side of the capacitance matrix equation multiplied by CT.

Let 9 denote CTC. We are concerned with solving = b by the coniugate gradient method .

Detailed exposition of the method can be found e.g. in [11), [16), [17], [18] and [26] . A brief

description of the method plus a simple extension of the known results in the above references

can be found in Section 6 of ( 3 2 1.  It wi l l  be assumed that  the readers sre famil iar  wi th the

results in [ 3 2 ) .

Let denote the vectors approximating the solution p generated by the conjeqate

gradient  process. Let R denote the set of real numbers and L denote the set of m vectors.

Let Z = R2 
* B and B : L ~ B be defined respectively by

Z ( a , b) = {u — V’~)/(l + pç)}
b;

E(P
k

) S 
~~
‘2
~~~k 

— 
~~~~~~ 

—

It is shown in (32 1 that the following holds.

Theorem 7.1 Let K and K
1 be the spectral condition numbers of 9 and B

~
Bh 

respectively.

Let d and d’ denote the smallest and largest eigenvalues of B
hB

h 
resepctively . Then given

> 0, there exists a positive integer independent of k and h such that

E ( P k )/ E ( P o
) < m i n f 4 Z ( K ,2 k ) ,  4Z ( K

1—2C/d ’ , 2 k — 2 N ) X ( A ) }

Here x ( X )  = max fi l l— A/A .!, i = 1,. . ., N , where A ., i = l , . . . ,N are the N eigenvalues of

* 

1 1

Q that  lie outside of Ed —E ,d’ +CJ

Corollary 7 .1 Let g = B
0
1 

be used in equation ( 3 . 5) . The number of iterations

needed to reduce E ( P k )/ E ( P o
) to a given accuracy can grow no faster than constant log in as

h - 0

Proof .  By Theorem 6 .3 , lx X 1  < h ~~~~, where k is a constant independent of h.  The corollary

is therefore an easy consequence of Theorem 7 .1.

Corollary 7 .2 Let (2 € 3 (6) 6 = 1 if either scheme l .a or I .b  is used; 6 = 0. 4 if sheme

II is used. Then the number of iterations needed to reduce E ( P
k
)/E(P

o
) to a given accuracy

stays constant as h ~ 0 if the G in ( 3 . 5 )  is the discrete Green’s function on the entire plane.

Proof. By Theorem 5.1 and Theorem 6.4, C is uniformly well conditioned in the

spectral norm . The corollary is therefore an immediate consequence of Theorem 7.1.
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§8 Survey of previous work on caoacitance matrix methods.

B. W. Hockney in [201 and (21) described a method of this type which can be used for the

solution of the interior Dirichlet problem for Laplace s equation. His capacitance matrices are

always positive definite symmetric. His method thus corresponds to a single layer Ansatz for

the Dirichlet problem. Buzbee , Dorr , George and Golub used a similar method in [8). They made

the Ansatz

u = B 1v + B 1 U Wp

when B is nonsingular. Here W is a m ~ m nonsingular metrix. The choice W = I gives the

Woodbury formula.

Proskurowski and Widlund introduced the double layer Ansatz in (29 1.  The algorithm used

in their work differs from the one used here only in the discrete Green s function G and the

wT matrix . No theoretical analysis was presented in [29 1.  In [2]] the author analyzed the

method for the Neumann problem. The algorithm used in [32] is similar to the one used by

George in (15] which corresponds to solving the single layer Ansatz of the Dirichlet problem

in an iterative imbedding fashion.

-
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‘9 Numerical experiments

The results in this section were obtained ~n the C~~ 7600 at Lawrence Berkeley Laboratory

The model øroblem is the Laplace equation on ellipses with y = (a—b)/ (a+b) , where a,b are the

half axes. ECU ) = ll u_ u *1L where u* is the true solution of -~u = 0 on 12 , u = 1 on

The mesh size h = 1/32. The number of iterations of the conjugate gradient method is denoted

by n N(P.) denotes the normalized norm of the residuals which is the L
2 norm of the residual

divided by the square root of points in Q . The numbers given for E(u) are acturally upper

bounds that describe the number of accurate digits only. The capacitance matrix is generated

explicitly and the discrete Green ’s function on the plane is used in (3 .5).

TABLE I

Scheme l.a Scheme I.b Scheme II

n 8(R) E(u) 8(R) E(u) 8(R) E(u)

- 
4 0 .2  —— — — 3.9—04 1.0—03

5 0,2 — — — — 2 . 1—04 1.0—03

4 1 1.5—04 1.0—03 8.7—03 1.0—02 3.5—04 1.0—03

5 1 1.0—04 1.0—03 4.2—03 1.0—02 1.6—04 1.0—03

In Table I we see that typically it ta]~es four iterations to achieve three digits accuracy .

The operation count of the conjugate gradient routine is therefore approximately 64n
2 . The total

operation count (not counting that of setting up the matrix c) is therefore approximately

Sn 2logn + 80n
2 for the Laplace ’ s equation and lOn 2 log n + 120n 2 for the Poisson equation .
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